威赫斯达伦山谷,乍看上去平淡无奇,却成为不明飞行物频频出现之地。
“那是挪威山区的一个美妙夜晚,空气清朗,群星环绕,空气清冷,景色相当迷人,突然,不知从哪里哗啦了一声!天空亮起来了。”说到这里,比约·盖特·豪格(Bjorn Gitle Hauge)停顿片刻,摇了摇头,一脸难以置信的表情,“那东西见了就忘不了,见了就想知道它究竟是怎么回事。”
豪格是挪威奥斯特福德大学学院的一名电气工程师。这番话是他在回忆7年前第一次见到赫斯达伦现象(Hessdalen phenomenon)时的情景:闪烁的奇异光球在挪威中部的山谷中盘旋,这个现象已经持续了至少一个世纪。
有时这些光球大得像轿车,能在空中漂浮2小时之久。有时它们又沿着山谷疾速飞行,最后骤然消失。有时它们是蓝色和白色的闪光,一眨眼工夫就匆匆来去。有时它们在白天出现,看起来仿佛金属物件在空中漂浮。上世纪80年代早期,当这些光球的出现频率达到了一周20次,不明飞行物(UFO)专家自然把赫斯达伦山谷当作了连接其他世界的门户,纷纷聚集到那里庆祝。
但是在一支同时开始研究神秘光球的国际团队看来,赫斯达伦山谷中隐藏的东西要远比飞碟激动人心。如果他们能揭晓那些奇妙光球的能量来源,他们就不仅可以解释世界其他地方的神秘光线,还能发明储存能量的崭新方法。这个“如果”可不得了。2014年夏天,这支团队将重返赫斯达伦,去验证好几个解释光球如何产生的理论。他们将带上实验室的最新成果,以及大量设备和感应装置。有了这些,或许一切会在今年真相大白。
在这些研究中,奥斯特福德大学学院的计算机工程师厄林·斯特兰德(Earling Strand)是一位关键人物。如果不是他,赫斯达伦有可能只是又一股UFO风潮。1982年,斯特兰德和大多数人一样,也从奥斯陆向北奔波400千米来到赫斯达伦,去观赏挪威新闻界所谓的“不明飞行物”。但和大家不同的是,他的脑子里想的不是太空船。“我想的是:一只奇怪的光球在天地间盘旋,这背后的物理原理是什么?”他很快就发现,这个现象无人能解。“我感觉科学家都不愿意插手此事,我想‘UFO’这几个字是主要原因。”
失望之下,他召集了三两个朋友,借了几件设备,又从几个志趣相投的挪威物理学家那里听取了建议,然后在1983年,他发起了“赫斯达伦计划”。这是第一个对光球做科学研究的计划。第二年夏天,他和队友首次去赫斯达伦山谷考察。他们目睹了188个光球,其中有53个是肯定不能用建筑物、车辆或飞机的灯光来解释的。他们给这些光球拍摄了影像,对它们发射了激光,用雷达纪录了它们的运动轨迹,还开展了一系列测试。这一切使他们确信,这些光球绝对是真实的自然现象。但这个现象何以产生,他们没有多少头绪。辐射和地震活动都可能是光球的能量之源,然而两方面的测量都没有得到结果。他们倒是在有些光球出现之前,在出现地周围检测到了磁场波动。
但是后来,这些光球像突然出现一样,又突然消失了,赫斯达伦计划也戛然而止。一直到1993年,当斯特兰德再次访问山谷,他和队友才得知,当地人其实一直能看见光球,只是他们遭到了媒体的笑话,所以从此不再开口了。
斯特兰德立刻又行动了起来。1994年,他在赫斯达伦组织了一次研讨会。许多与会代表都对其他神秘的大气现象怀有兴趣,比如球状闪电和圣艾尔摩之火,对赫斯达伦山谷这间天然的实验室同样兴味盎然。会议之后,研究者重新开始用雷达测量光球的尺寸、形状和速度。他们还用上了光谱分析,希望能发现构成光球的元素。与会者还决心在电学、磁学和地质学上寻找赫斯达伦山谷的特殊之处,希望能解释它何以会成为光球出没的热点。
等离子光球?
自2000年开始,每年9月都有一小队意大利、挪威和法国的研究者返回山谷,将神秘的光球作为自己日常研究的副业。他们测量发现,赫斯伦达光球没有声响,温度似乎也不高——至少不会使接触到的土地和树木烧起来。不过也有证据显示,它们着陆时会将地面消毒、将土壤中的微生物杀死。斯特兰德见过一个光球在雪地上降落的情景,虽然积雪并未融化,但还是留下了一个印记。分析显示,这个印记的积雪中没有微生物,然而在大约15米开外的地方,微生物的水平依然正常。
另一个出人意料的发现是,即使在光球没有现身的时候,山谷上方的空气里也似乎还是有那么一点动静。雷达数据显示,空中的某些隐形物体正强烈地反射着雷达波。
大多数研究者认为,这些证据都指向了某种等离子体。当一团气体发生电离,它就会变成一团离子和电子的云气(也就是等离子)。当这些离子和电子重新组合,就会以光的形式放出能量。而等离子体的一个性质就是能够杀菌,而且在特定的条件下,它也的确会降温到可以触碰的地步(参见《应用物理学杂志》,第45卷,165205页)。等离子体未必发出可见光——有时候,它们的辐射会落在光谱的红外或者紫外部分。
问题解决了吗?没那么快,因为等离子体是很难形成的。英国帝国理工学院的等离子物理学家迈克尔·考平斯(Michael Coppins)表示,要电离一团气体,就必须把它加热到10000℃左右,而这样的高温是需要很多能量的。
不过,发光球体的确会在地球上自然产生。2012年,就有一组科学家捕捉到了它诞生时的情景。当时,williamhill官网 兰州西北师范大学的岑建勇和他的同事正在williamhill官网 西北偏远地区研究一场雷暴,好运不期而至:他们的设备记录到了不远处的一道闪电,在它击中地面的同时,一个直径5米的球状闪电诞生了。它在空中逗留了一秒多钟时间,随即消失。光谱分析显示,这个球体含有硅、铁和钙。有趣的是,赫斯达伦光球的光谱同样显示其中含有硅和铁,另外还有钪—— 一种在当地十分常见、也恰好能轻易电离的元素。
这似乎说明,赫斯达伦现象就是球状闪电。然而在赫斯达伦,光球和雷暴并没有什么关系——它们可以在晴朗的傍晚倏然出现。“肯定是哪里藏着一个能量源,能产生闪电那么大的能量。”豪格说,“到底什么东西能为一辆轿车大小的光球充电,还能一连驱使它好几个钟头呢?”
也许是山谷的形状有什么名堂,是它的微气候或者地质产生了强大的电流。豪格介绍说,有一种观点认为,山谷的强风可以激起山上的静电。还有研究显示,风吹起的积雪或沙子也能产生静电。“赫斯达伦的山顶上有铁质,冬季气候极端,风速很快。”他说,“也许就是这狂风吹来了电荷。”
另一个观点认为,这些光球的能量来自放射性;具体地说,是来自大气中氡的衰变。这个观点的提出者是里约热内卢巴西物理研究中心的吉尔森·派瓦(Gerson Paiva)和卡尔顿·塔夫特(Carlton Taft),两人曾在实验室里制造出球状闪电和等离子体。他们在2010年主张,赫斯达伦光球是由“尘埃等离子体”(dusty plasma)构成的,也就是电离的尘埃微粒。他们曾用氡衰变制造出尘埃等离子体,而且他们相信,在赫斯达伦发生的或许就是类似的现象(参见《大气物理学与日地物理学杂志》,第72卷,1200页)。
考平斯承认,放射性衰变的确可能产生某种等离子体。但不巧的是,从1984年开始的每一次现场实验,都没有在赫斯达伦山谷发现放射性的证据,甚至山谷里的放射性本底还低于周围地区。不过,豪格还是将寻找氡定为了2014年的头号任务,准备在一个大号光球出没的区域安装氡探测器。他坦言,他的团队还没有在这个区域找到放射性氡的大块岩石,不过附近几个积水的矿洞或许会有所发现。有没有可能是大团氡气泡从地层深处升起,并在突破水面、接触空气的时候携带了水面的尘埃?“气泡浮到水面,然后呼的亮了!”他说。
分成两半的土地
今年下半年的另一项主要研究将由意大利射电天文学研究所的贾德·莫纳瑞(Jader Monari)领衔。莫纳瑞从1996年起就一直在研究山谷中的光谱和电异常。今年,他又把目光转向了山谷的独特地质,希望能从中找到异常能源的证据。
2011年,莫纳瑞和他的团队分析了赫斯达伦的岩石样本。他们发现,这是一条分成两半的山谷:以赫斯佳河为界,山谷一侧的岩石富含锌和铁,另一侧则富含铜。在2012年的考察活动中,有人提到了山谷里有一座废弃的硫矿。“这是我以前不知道的,”莫纳瑞说,“我们在山谷的一侧发现了锌和铁,另一侧发现了铜。如果中间的河水中还含有硫,那就是一块完整的电池了。”
莫纳瑞猜想,山谷一侧的铁和锌可能充当了这节天然电池的阳极,另一侧的铜充当了阴极,而硫矿中滤出的硫酸则将中间的河流转变成了电解液。这样的假设就可以解释他们在2010年测量到的一次电场异常了。
为了验证这个想法,他和同事、意大利博洛尼亚大学的罗马诺·塞拉(Romano Serra)从山谷两侧各采了一块岩石作为正负极,然后将它们浸泡在河流的沉积物中,模拟一节电池。结果发现,两块岩石间确有电流通过。莫纳瑞说,“大概可以点亮一盏电灯。”
莫纳瑞认为,这种独特的地质对光球的产生起到了两个作用。第一,硫磺气体和山谷中的湿润空气发生反应时能够产生电离气泡。第二,山谷中分布了电磁场线,驱使气泡四处移动。他说,“这个电场开辟了一条道路,可以作为光球在山谷中移动的‘干道’。”
这似乎也与证据吻合。如果那些离子气泡是一些冷等离子体,能量不高,尚不足以发出可见光,它们的确有可能在山谷中隐身飞行,只有反射的雷达脉冲才能证明它们的存在。
莫纳瑞说,这还可以解释光球为什么看起来是移动的:那些离子气泡能够移动变形,当云气的整体形状发生改变,而它的不同部分被等离子点亮,看起来就仿佛是移动的光球了。当云气的一部分短暂激活时,光球还会显得一闪一闪。
豪格认为,使云气发光的能量可能来自电荷的积累。这个假设还可以解释白天在空中出现的神秘金属状物体。“大家以为自己看见的是金属,其实不是,”豪格说,“那只是非常致密的云朵在发光。”
只有一个现象是这个天然电池理论解释不了的:给等离子体供应能量使它发光的又是什么?近些年来,研究者发现,这些光球在出现极光的时候特别显眼。豪格说,2007年的一次壮丽的极光之后仅30分钟,山谷里就迸发出了强烈的光芒。到3年前,又有几个意大利研究者在绿色的极光下拍摄到了光球。豪格指出:“出现极光说明大气被电离了,空气中电荷较多。”
有了这么多新线索,赫斯达伦计划的每一个参与者都心痒痒地想重回山谷。这当然并不容易:北极的气候变幻莫测,一次研究者居然在8月陷身雪暴;两年前,有好几架摄像机被风吹进山谷砸碎。不过豪格一直在研发一种的新的设备,希望能同时拍摄整个山谷,而不再像过去那样一次只拍十分之一。对此他不愿详谈,只说了设备的名字叫“鹰眼”,不过他对这种设备的潜力显然相当兴奋。“我可以一下子什么都看见,还可以和雷达图像对比。”他说,“我希望今年就能把这设备运上山去。”
也许谜题就快解开了。如果真是那样,我们也许很快就能证明那些光球不仅是一道亮丽的风景。一旦明白了这些奇异的光球获得能量的机制,我们或许就能在任何地点、任何时间把它们创造出来。“这或许会成为储存能量的一种新机制。”豪格说,“如果有一种装置能把带电微粒收集并封锁起来,它就能用来储存能量了。”
眼下这还只是假设。斯特兰德这位计划发起人相当谨慎,他提醒说:“现在的各种理论都缺乏过硬的事实支撑,这样可能会危害研究。”他还说,研究者现在最重要的任务就是收集数据,先把自己的研究对象弄清楚再说其他。
无论这些奇怪的光球是我们的清洁能源,抑或它们只是照亮峡谷的反常物理现象,有一件事是肯定的:真相就在赫斯达伦的山谷中盘旋着。在找到真相之前,这群侦探是绝对不会罢手的。外星人还是靠边站吧。(Caroline Williams)